Synthesis of the *CD* **and** *E* **Ring Systems of the Calicheamicin** *yll* **Oligosaccharide**

K. C. Nicolaou,* R. D. Groneberg, N. A. Stylianides, and T. Miyazaki

Department of Chemistry, Research Institute of Scripps Clinic, 10666 N. Torrey Pines Rd, la Jolla, CA 92037, USA

Department of Chemistry, University of California, San Diego, La Jolla, CA 92093, USA

Syntheses of the *CD* and *E* ring systems of calicheamicin γ_1 ¹ as compounds **(2)** and **(3)** (for *CD*) and **(4)** and **(5)** (for *E)* in their naturally occurring forms are reported.

The intriguing molecular structures of the calicheamicins¹ coupled with their phenomenal potencies as antibiotics and antitumour agents and their unusual mode of action prompted a flurry of research activities in recent times. Most of the synthetic efforts in this area have so far focused on biological mimics,² the bicyclic enediyne skeleton,³ and the carbohydrate-aromatic fragment⁴ of these molecules. In this communication we report the synthesis of the *CD* and *E* ring systems of calicheamicin γ_1^I (1), the most prominent member of the calicheamicin family of antibiotics, as compounds **(2)** and **(3)** (for *CD)* and **(4)** and *(5)* (for *E)* in their naturally occurring forms.

Scheme 1 outlines the stereoselective construction of the *CD* systems **(2)** and **(3)** from the readily available fragments **(6)t** and **(10).4a** Thus, **(6)** was selectively methylated at the 3-hydroxy group with $Buⁿ2SnO-CsF-MeI⁵$ to afford compound **(7)\$** (65% yield, plus 30% recovered starting material). Acetylation of **(7)** afforded **(8)** (95% yield), a derivative designed to undergo selective α -glycosidation due to neighbouring group participation, as desired in the present synthetic sequence. Fluoride **(9)** was generated from **(8)** upon exposure to N -bromosuccinimide (NBS) and diaminosulphur trifluoride (DAST)6 (85%). Coupling of **(9)** with **(10)** under the influence of $AgClO₄-SnCl₂^{6,7}$ proceeded smoothly to afford, stereospecifically, glycoside **(11)** in 80% yield. Deacetylation of **(11)** under standard conditions furnished the requisite *CD* system as the dihydroxy methyl ester **(2),§** in quantitative yield.

Bis(sily1ation) of **(2)** (92%) followed by di-isobutylaluminium hydride (DIBAL) reduction (goyo) gave alcohol **(13)** *via* derivative **(12).** Finally, ruthenium chloride-sodium periodate

§ Selected physical properties of compounds (2)-(5). **(2):** *Rf* 0.20 (silica, 70% EtOAc in light petroleum); mp 137° C; α _{JD}²³ –47.4° (*c*) 0.5, CHCl₃); IR(CHCl₃) v_{max} 3600m, 2950m, 1750s, 1450s, 1400s, 1380s, 1280s cm-l; 'H NMR (300 MHz, CDC1,) 6 5.72 **(s,** 1 H, H-1), 4.45 **(s,** 1 H, H-2), 4.23-4.13 (m, 1 H, H-5), 3.90 **(s,** 3 H, H3CO), 3.86 **(s,** 3 H, H3CO), 3.84-3.81 (m, 4 H, H3C0, H-3), 3.62 (dd, J9.5,9.4 Hz, H-4), 3.55 (s, 3 H, H3CO), 2.44, 2.37 (br.s, 1 H, HO), 2.34 **(s,** 3 H, H3C-aromatic), 1.27 (d, *J* 6.2 Hz, H-6). **(3): Rf** 0.23 (silica, 70% EtOAc in light petroleum); mp 140 °C; $[\alpha]_D^2$ ²³ -36.2° (c 0.35, CHCl₃); IR(CHC13) **Y,,,** 3600m, 3026m, 3010m, 2939m, 1685s, 1478s, 1458m cm-I; lH NMR (300 MHz, CDC13) **6** 7.49-7.45 (m, 2 H, aromatic), 7.40-7.37 (m, 3 H, aromatic), 5.67 (d, $J1.4$ Hz, 1 H, H-1), 4.42 (dd, J 2.8, 1.4 Hz, 1 H, H-2), 4.21 - 4.11 (m, 1 H, H-5), 3.89 (s, 3 H, H₃CO), 3.80-3.76 (m, 4 H, H₃CO, H-3), 3.58 (dd, *J* 9.4, 9.4 Hz, H-4), 3.51 **(s,** 3 H, H3CO), 2.39 **(s,** 3 H, H3C-aromatic) 2.34, 2.26 (br.s, 1 H, HO), 1.24 (d, *J* 6.3 Hz, 3 H, H-6). **(4):** *Rf* 0.27 (silica, 10% MeOH in EtOAc); $[\alpha]_{D}^{23}$ -56.7° (c 1.0, CHCl₃); IR (CHCl₃) v_{max} 3012m, 2969s, 2937s, 2911s, 2834m, 1466m, 1446m, 1376m, 1358w, 1248m, 3.6, 2.2 Hz, 1 **H,** H-1), 3.79 (dd, *J* 11.0, 4.7 Hz, 1 H, H-5 *eq),* 3.61-3.51 (m, 2 H, H-5 *ax,* H-3), 3.15 **(s,** 3 H, H3CO). 3.03 **(s,** 3 **H,** H3CO), 2.74 (ddd, J9.7,9.0,4.7 Hz, 1 H, H-4), 2.52-2.38 (m, 2 H, H2CN), 2.11 (ddd, *J* 12.7,4.5,2.2 Hz, 1 H, H-2 *eq),* 1.47 (ddd, *J* 12.7, 10.5,3.6 Hz, 1 H, H-2 *ax),* 1.30 (br.s, 1 H, HN), 0.91 (t, *J* 7.1 Hz, 3 H, H₃C). (5): $R_f = 0.18$ (silica, 10% MeOH in EtOAc); $[\alpha]_D^{25} + 99.7^\circ$ (c 1.0, CHCl,); IR (CHC13) **Y,,,** 2971s, 2836s, 2700s, 2457m, 1584m, 1449m, 1392m, 1239m, 1191m cm⁻¹; ¹H NMR (300 MHz, C₆D₆) δ 4.144.07 (m, 2 H, H-5 *eq,* H-l), 3.37 **(s,** 3 H, H3CO), 3.07 (dd, J9.6, 9.0 Hz, 1 H, H-5 *ax),* 3.07-3.00 (m, 4 H, H-3, H3CO), 2.66 (ddd, *^J* 9.0, 9.0, 4.5 Hz, 1 H, H-4), 2.46-2.33 **(m,** 2 H, H2C-N), 2.13 (ddd, *^J* 12.4, 4.5 2.4 Hz, 1 H, H-2 eq), 1.96 (br.s, 1 H, HN), 1.59 (ddd, J 12.4, 1202m, 1154m, 1127s cm-I; 'H NMR (300 MHz, C6D6) *b* 4.66 (dd, *J* $10.5, 8.9$ Hz, 1 H, H-2 ax), 0.89 (t, $J7.1$ Hz, 3 H, H_3C).

[†] This compound was prepared from L-rhamnose in ca 60% overall yield by the following sequence: (i) Ac_2O , dimethylaminopyridine (DMAP), CH_2Cl_2 , $25 °C$; (ii) $SnCl_4$ -PhSH, CH_2Cl_2 , $0 °C$; (iii) $K₂CO₃$ -MeOH, 25 °C.

 \ddagger All new compounds exhibited satisfactory spectral and analytical and/or exact mass data. Yields refer to spectroscopically and chromatographically homogenous materials.

OMe

Scheme 1. Synthesis of the DC systems (2) and (3). Reagents and conditions: (a) 1.1 equiv. of Bu_n^2SnO , MeOH, 65 °C, 2 h, then dimethylformamide (DMF), 4 equiv. of MeI, 1.1 equiv. of CsF, 25 °C, 12 h, 65%, plus 30% starting material (6); (b) 3.0 equiv. of Ac₂O, 3.5 equiv. of Et₃N, DMAP cat., CH₂Cl₂, $0-25$ °C, 2 h, 95%; (c) 2.0 equiv. of DAST, 1.4 equiv. of NBS, CH_2Cl_2 , -78 to 0 °C, 3 h, 85%; (d) 1.0 equiv. of (10), 2.0 equiv. of (9), 4.0 equiv. of $SnCl₂$, 4.0 equiv. of AgClO₄, 4 Å molecular sieves, CH₂Cl₂, -20 to 0 °C, 12 h, 80%; (e) 0.5 equiv. of K₂CO₃, MeOH, 25 °C, 2 h, 100%; (f) 2.5 equiv. of
Et₃SiOSO₂CF₃, 3.0 equiv. of 2,6-lutidine, CH₂Cl₂, -20 to 0 °C,
1 h, 92%; (g) 2.5 equiv. of DIBAL, CH₂Cl₂, -78 to 0 °C, 2 h, 90%; (h) 0.02 equiv. of RuCl₃ hydrate, 4.0 equiv. of NaIO₄, CCl₄-MeCN-H₂O $(2:2:3)$, 0 to 25 °C, 3 h, 75%; (i) 1.5 equiv. of PhOP(O)Cl₂, 4.0 equiv. of pyridine, 2.0 equiv. of PhSH, dimethoxyethane, 0-25 °C, 1 h, 90%; (j) 2.2 equiv. of Bu₄NF, tetrahydrofuran (THF), 0° C, 0.5 h, 90%.

HO

н

Me

(4) $X = OMe, Y = H$ $(5) X = H, Y = OMe$

Scheme 2. Synthesis of E ring (4) and (5). Reagents and conditions: (a) 1.0 equiv. of Et₃N, MeOH, 0 °C, 10 min, then 1.0 equiv. of MeCHO, 0° C, 2 h, then 2.0 equiv. of NaBH₄, 0° C, 1 h, 64%; (b) 1.1 equiv. of carbonyldi-imidazole, MeCN, 80 °C, 66%; (c) 1.05 equiv. of DIBAL, CH₂Cl₂, -78 °C, 3 h, 75%; (d) 1.3 equiv. of $(-)$ - β -methoxydiisopinocampheylborane, 1.3 equiv. of allylmagnesium bromide, THF, -78 to 25 °C, 14 h, then (ref. 12) pH 7 buffer; MeOH-30% H_2O_2 $(3:1)$, 0° C, 1 h, 75%; (e) 1.2 equiv. of Ag₂O, 5 equiv. of MeI, DMF, 40 °C, 12 h, 92%; (f) ozone, CH₂Cl₂-MeOH (1:1), -78 °C, then 2.0
equiv. of P(OMe)₃, -78 to 25 °C, 1.5 h, 91%; (g) MeOH,
Amberlyst-15, 25 °C, 14 h, 85%; (h) 1.5 equiv. of NaOH, MeOH- $H_2O(2:1)$, 90 °C, 1 h, 96%; (i) 1.5 equiv. of HCl, MeOH, 25 °C, 1 h, 88%; (j) recrystallization from EtOAc.

oxidation⁸ of (13) at -20 °C afforded carboxylic acid (14) (75%) which was successfully coupled to benzenethiol under the influence of $PhOP(O)Cl₂⁹$ to furnish the phenylthio ester (15) in 90% yield. Finally, desilylation of (15) gave the targeted CD ring system (3) § (90%) .

The synthesis of the two isomers of the carbohydrate unit *E,* compounds **(4)** *(1R)* and *(5) (lS),* proceeded from serine methyl ester hydrochloride **(16)** as shown in Scheme 2. Thus, reductive alkylation of **(16)** with acetaldehyde and sodium borohydride¹⁰ produced the monoalkylated amine (17) in 66% yield. Oxazolidinone formation with carbonyldi-imidazole in refluxing acetonitrile gave **(18)** (64%) which was reduced with DIBAL to the aldehyde **(19)** in good yield. Stereoselective addition of an ally1 group to the aldehyde function of (19) was achieved *via* the action of $(-)$ - β **methoxydi-isopinocampheylborane11** and allylmagnesium bromide leading to a single isomer **(20)** (in *75%* yield). Methylation **of (20)** (Ag20-MeI, 92%) followed by ozonolysis (91%) led to methoxy aldehyde *(22) via* compound **(21).** Acetalization of **(22)** proceeded smoothly in MeOH under acid catalysis leading to compound **(23)** (85%) which was then exposed to basic conditions to produce the amino alcohol **(24)** in 96% yield. Finally, cyclization of **(24)** in methanol with anhydrous hydrogen chloride furnished a mixture **of** the methoxy isomers **(4)** *(1R)* and *(5)* (1s) which were separated by recrystallization from ethyl acetate to give pure compounds $(4)\$ $[$ and $(5).$ §

The described chemistry demonstrates efficient technology for the construction of the crucial bonds α (glycosidic) and β (thioester) linking carbohydrate units *D* and *B* to the aromatic moiety C of the calicheamicin γ_1^T oligosaccharide. Furthermore, the reported sequences render readily available derivatives of the *CD* and *E* ring systems of the calicheamicins for DNA binding studies and further synthetic and bio-organic investigations.

This work was financially supported by the National Institutes of Health, USA, Hoffmann La Roche, USA, Merck Sharp and Dohme, USA and Glaxo Inc. Research Laboratories, **USA.** T. M. is a visiting scientist from Ono Pharmaceuticals Co., Japan.

Received, 21st May 1990; Corn. 0i02232B

fi The optical purity of **(4)** was determined at its N-acetyl derivative and found to be $\alpha|_{D^{25}} - 99.0^{\circ}$ (c 0.96, CHCl₃); lit^{4c} $\alpha|_{D^{20}} - 96.0^{\circ}$ (c $0.9, CHCl₃$).

References

- **¹**M. D. Lee, T. **S.** Dunne, M. M. Siegel, C. C. Chang, G. 0. Morton, and D. B. Borders, *J. Am. Chem. Soc.*, 1987, 109, 3464; M. D. Lee, T. **S.** Dunne, C. C. Chang, G. **A.** Ellestad, M. M. Siegel, G. 0. Morton, W. **J.** McGahren, and D. B. Borders, *ibid.,* **1987, 109, 3466.**
- **2** K. C. Nicolaou, Y. Ogawa, G. Zuccarello, and H. Kataoka, *J. Am. Chem.* **SOC., 1988, 110, 7247; K.** C. Nicolaou, G. Zuccarello, Y. Ogawa, E. J. Schweiger, and T. Kumazawa, *ibid.,* **1988, 110, 4866.**
- **3 M.** P. Cabal, R. **S.** Coleman, and **S.** J. Danishefsky, *J. Am. Chem. SOC.,* **1990,112, 3253;** J. N. Haseltine, **S. J.** Danishefsky, and G. Schulte, *ibid.,* **1989, 111, 7638; S.** J. Danishefsky, N. B. Mantlo, D. **S.** Yamashita, and *G.* Schulte, *ibid.,* **1988, 110, 6890; S.** J. Danishefsky, D. **S.** Yamashita, and N. B. Mantlo, *Tetrahedron Lett.,* **1988, 29, 4681; S.** L. Schreiber and L. L. Kiessling, *ibid.,* **1989,30,433;** P. Magnus and R. T. Lewis, *ibid.,* **1989,30,1905;** P. Magnus, **R.** T. Lewis, and F. Bennett, *J. Chem.* **Soc.,** *Chem. Commun.,* **1989,916; P.** Magnus, R. T. Lewis, and J. C. Huffman, *J. Am. Chem.* **SOC., 1988,110,6921;** P. Magnus and P. **A.** Carter, *ibid.,* **1988, 110, 626; A. S.** Kende and C. **A.** Smith, *Tetrahedron Lett.,* **1988, 29,4217;** K. Tomioka, H. Fujita, and K. Koga, *ibid.,* **1989,30, 851.**
- **4** (a) K. C. Nicolaou, T. Ebata, N. **A.** Stylianides, R. D. Groneberg, and P. **J.** Carrol, *Angew Chem., Znt. Ed. Engl.,* **1988,27,1097;** (b) K. C. Nicolaou and R. D. Groneberg, *J. Am. Chem. Soc.*, 1990, **112,4085;** M. D. Wittman, R. L. Halcomb, **S.** J. Danishefsky, J. Golik, and D. Vyas, *J. Org. Chem.,* **1990,** *55,* **1979;** M. D. Wittman, R. L. Halcomb, and *S.* J. Danishefsky, *ibid.,* **1990,** *55,* **1981; K.** Van Laak and H. D. Scharf, *Tetrahedron Lett.,* **1989,30, 4505; J.** Golik, **H.** Wong, D. M. Vyas, and T. W. Doyle, *ibid.,* **1989, 30, 2497;** (c) D. Kahne, D. Yang, and M. D. Lee, *ibid.,* **1990,31, 21.**
- *5* N. Nagashima and M. Ohno, *Chem. Lett.,* **1987, 141.**
- *6* **K.** C. Nicolaou, R. E. Dolle, D. P. Papahatjis, and J. L. Randall, *J. Am. Chem.* **SOC., 1984, 106,4189.**
- **7** T. Mukaiyama, **Y.** Murai, and *S.* Shoda, *Chem. Lett.,* **1981,431.**
- **8** P. H. J. Carlsen, T. Katsuki, **V. S.** Martin, and K. B. Sharpless, *J. Org. Chem.,* **1981,46, 3936.**
- **9** H.-J. Liu and *S.* **I.** Sabesan, *Can. J. Chem.,* **1980,58, 2645.**
- **10** C. M. Thompson, **J. A.** Frick, andD. L. C. Green, *J. Org. Chem.,* **1990, 55, 111.**
- **11** P. K. Jadhav, **K. S.** Bhat, P. T. Perumal, and H. C. Brown, *J. Org. Chem.,* **1986,51,432.**
- **12** D. **A.** Evans, **J.** V. Nelson, E. Vogel, and T. R. Taber, *J. Am. Chem. SOC.,* **1981, 103, 3099.**